251 research outputs found

    Learning SO(3) Equivariant Representations with Spherical CNNs

    Full text link
    We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.Comment: Camera-ready. Accepted to ECCV'18 as oral presentatio

    Transport Spectroscopy of the Field Induced Cascade of Lifshitz Transitions in YbRh2Si2

    Full text link
    A series of strong anomalies in the thermoelectric power is observed in the heavy fermion compound YbRh2_2Si2_2 under the effect of magnetic field varying in the range from 9.5~T to 13~T. We identify these features with a sequence of topological transformations of the sophisticated Fermi surface of this compound, namely a cascade of Lifshitz topological transitions. In order to undoubtedly attribute these anomalies to the specific topological changes of the Fermi surface, we employ the renormalized band method. Basing on its results we suggest a simplified model consisting of the large peripheral Fermi surface sheet and the number of continuously appearing (disappearing) small "voids" or "necks". We account for the multiple electron scattering processes between various components of the Fermi surface, calculate the corresponding scattering times, and, finally, find the magnetic field dependence of the Seebeck coefficient. The obtained analytical expression reproduces reasonably the observed positions of the maxima and minima as well as the overall line shapes and allows us to identify the character of corresponding topological transformations.Comment: 7 pages, 6 figure, to appear in J. Phys. Soc. Jp

    Itinerant U 5f band states in the layered compound UFeGa5 observed by soft X-ray angle-resolved photoemission spectroscopy

    Full text link
    We have performed angle-resolved photoemission spectroscopy (ARPES) experiments on paramagnetic UFeGa5 using soft X-ray synchrotron radiation (hn=500eV) and derived the bulk- and U 5f-sensitive electronic structure of UFeGa5. Although the agreement between the experimental band structure and the LDA calculation treating U 5f electrons as being itinerant is qualitative, the morphology of the Fermi surface is well explained by the calculation, suggesting that the U 5f states can be essentially understood within the itinerant-electron model.Comment: 13 pages, 4 figur

    3d Partition Function as Overlap of Wavefunctions

    Full text link
    We compute the partition function on S^3 of 3d N=4 theories which arise as the low-energy limit of 4d N=4 super Yang-Mills theory on a segment or on a junction, and propose its 1d interpretation. We show that the partition function can be written as an overlap of wavefunctions determined by the boundary conditions. We also comment on the connection of our results with the 4d superconformal index and the 2d q-deformed Yang-Mills theory.Comment: 24 pages, 13 figure

    Assessment of preoperative exercise capacity in hepatocellular carcinoma patients with chronic liver injury undergoing hepatectomy

    Get PDF
    BACKGROUND: Cardiopulmonary exercise testing measures oxygen uptake at increasing levels of work and predicts cardiopulmonary performance under conditions of stress, such as after abdominal surgery. Dynamic assessment of preoperative exercise capacity may be a useful predictor of postoperative prognosis. This study examined the relationship between preoperative exercise capacity and event-free survival in hepatocellular carcinoma (HCC) patients with chronic liver injury who underwent hepatectomy. METHODS: Sixty-one HCC patients underwent preoperative cardiopulmonary exercise testing to determine their anaerobic threshold (AT). The AT was defined as the break point between carbon dioxide production and oxygen consumption per unit of time (VO(2)). Postoperative events including recurrence of HCC, death, liver failure, and complications of cirrhosis were recorded. Univariate and multivariate analyses were performed to evaluate associations between 35 clinical factors and outcomes, and identify independent prognostic indicators of event-free survival and maintenance of Child-Pugh class. RESULTS: Multivariate analyses identified preoperative branched-chain amino acid/tyrosine ratio (BTR) <5, alanine aminotransferase level ≥42 IU/l, and AT VO(2) <11.5 ml/min/kg as independent prognostic indicators of event-free survival. AT VO(2) <11.5 ml/min/kg and BTR <5 were identified as independent prognostic indicators of maintenance of Child-Pugh class. CONCLUSIONS: This study identified preoperative exercise capacity as an independent prognostic indicator of event-free survival and maintenance of Child-Pugh class in HCC patients with chronic liver injury undergoing hepatectomy

    Retrieval and classification methods for textured 3D models: a comparative study

    No full text
    International audienceThis paper presents a comparative study of six methods for the retrieval and classification of tex-tured 3D models, which have been selected as representative of the state of the art. To better analyse and control how methods deal with specific classes of geometric and texture deformations, we built a collection of 572 synthetic textured mesh models, in which each class includes multiple texture and geometric modifications of a small set of null models. Results show a challenging, yet lively, scenario and also reveal interesting insights in how to deal with texture information according to different approaches, possibly working in the CIELab as well as in modifications of the RGB colour space

    The ABCDEF's of Matrix Models for Supersymmetric Chern-Simons Theories

    Full text link
    We consider N = 3 supersymmetric Chern-Simons gauge theories with product unitary and orthosymplectic groups and bifundamental and fundamental fields. We study the partition functions on an S^3 by using the Kapustin-Willett-Yaakov matrix model. The saddlepoint equations in a large N limit lead to a constraint that the long range forces between the eigenvalues must cancel; the resulting quiver theories are of affine Dynkin type. We introduce a folding/unfolding trick which lets us, at the level of the large N matrix model, (i) map quivers with orthosymplectic groups to those with unitary groups, and (ii) obtain non-simply laced quivers from the corresponding simply laced quivers using a Z_2 outer automorphism. The brane configurations of the quivers are described in string theory and the folding/unfolding is interpreted as the addition/subtraction of orientifold and orbifold planes. We also relate the U(N) quiver theories to the affine ADE quiver matrix models with a Stieltjes-Wigert type potential, and derive the generalized Seiberg duality in 2 + 1 dimensions from Seiberg duality in 3 + 1 dimensions.Comment: 30 pages, 5 figure

    Some No-go Theorems for String Duals of Non-relativistic Lifshitz-like Theories

    Full text link
    We study possibilities of string theory embeddings of the gravity duals for non-relativistic Lifshitz-like theories with anisotropic scale invariance. We search classical solutions in type IIA and eleven-dimensional supergravities which are expected to be dual to (2+1)-dimensional Lifshitz-like theories. Under reasonable ansaetze, we prove that such gravity duals in the supergravities are not possible. We also discuss a possible physical reason behind this.Comment: 18 pages, Latex, flux conditions clarified (v2), brief summary of results added (v3

    Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT

    Full text link
    We present holographic descriptions of thermalization in conformal field theories using probe D-branes in AdS X S space-times. We find that the induced metrics on Dp-brane worldvolumes which are rotating in an internal sphere direction have horizons with characteristic Hawking temperatures even if there is no black hole in the bulk AdS. The AdS/CFT correspondence applied to such systems indeed reveals thermal properties such as Brownian motions and AC conductivities in the dual conformal field theories. We also use this framework to holographically analyze time-dependent systems undergoing a quantum quench, where parameters in quantum field theories, such as a mass or a coupling constant, are suddenly changed. We confirm that this leads to thermal behavior by demonstrating the formation of apparent horizons in the induced metric after a certain time.Comment: LaTeX, 47 pages, 14 figures; Typos corrected and references added (v2); minor corrections, references added(v3
    corecore